Monitoring System of Regional Cerebral Oxygen Saturation (rSO₂) **During Pre-hospital Cardiopulmonary Resuscitation**

Goro Tajima¹, Tadahiko Shiozaki², Hiroo Izumino¹, Shuhei Yamano¹, Tomohito Hirao¹, Takamitsu Inokuma¹, Kazunori Yamashita¹, Atsuko Nagatani¹, Osamu Tasaki¹

Nagasaki University Hospital, Emergency Medical Center¹ Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine²

Backgrounds

- > It is very difficult to recover without neurological deficit in out of hospital cardiac arrest (OHCA).
- \succ rSO₂(regional cerebral SO₂) may predict neurological outcome or return of spontaneous circulation (ROSC) (Ito et al. Resuscitation 2012, Ahn et. al Resuscitation 2013)

Objective

- \succ To establish the monitoring system of rSO₂ in patients with cardiopulmonary arrest (CPA) from pre-hospital.
- > To clarify the changes in rSO₂ during cardiopulmonary resuscitation (CPR).

Methods

Patients are all the CPA patients who got CPR and were transferred by Emergency response vehicle (ERV) of Nagasaki University Hospital. Using the portable Near Infrared Spectroscopy (NIRS), rSO2 was measured continuously during pre-hospital CPR.

[NIRS : HAND ai TOS, TOSTEC, Tokyo, Japan)]

ERV arrival

Transfer into the ambulance

Patients

	Age	Sex	Witness	Rhythm	Bystande CPR	er Etiology	ROSC	Time 1*	Time 2*	Outcome
Case 1	80	Μ	0	Vf	0	ACS	0	16	31	CPC5 (10h)
Case 2	85	F	X	Asystole	Χ	unknown	0	14	35	CPC5 (7h)
Case 3	70	F	X	Asystole	X	unknown	X	7	33	CPC5
Case 4	71	F	X	Asystole	X	Asphyxia	X	12	37	CPC5
Case 5	71	F	X	PEA	Χ	Drowning?	X	16	47	CPC5
Case 6	85	Μ	0	Asystole	0	SCI	0	23	44	CPC4 (45day
Case 7	52	F	0	Asystole	0	Asphyxia	0	25	52	CPC5 (10day
Case 8	90	Μ	X	Asystole	Χ	Asphyxia	0	10	30	CPC5 (2day)
Case 9	1	F	Χ	Asystole	Χ	unknown	X	17	46	CPC5

Tracheal Intubation

In the ambulance

rSO₂: Initial vs. after intubation

16(11-20)37(32-46)

*Time 1 : EMS call ~ ERV arrival Time 2 : EMS call ~ Hospital arrival

Conclusion

> We developed the rSO₂ monitoring system during pre-hospital **CPR.** This system made it possible to evaluate the cerebral oxygenation about in 15minutes from EMS call.

 \succ rSO₂ significantly increased after ROSC, but not after intubation.

 \succ There was no significant difference in rSO₂ between ROSC and non-ROSC during pre-hospital CPR.