Differential recovery between Regional Cerebral Oxygen Saturation (rSO₂) and physiological parameters in cardiopulmonary arrest (CPA) patients after return of spontaneous circulation

Goro Tajima¹, Tadahiko Shiozaki², Yoshihito Ogawa², Tomoya Hirose², Nobuto Mori², Tomohiro Ueki¹, Hiroo Izumino¹, Shuhei Yamano¹, Tomohito Hirao¹, Takamitsu Inokuma¹,Kazunori Yamashita¹, Atsuko Nagatani¹, Osamu Tasaki¹

Nagasaki University Hospital, Emergency Medical Center¹ Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine²

Backgrounds

 \succ rSO₂ (regional cerebral SO₂) may predict neurological outcome or return of spontaneous circulation (ROSC)

 \succ We clarified that rSO₂ increased immediately in ROSC patients but not in non-ROSC patients. (Tajima et al. Acute Medicine and Surgery 2014)

Objective

We aimed to clarify the change in rSO_2 , blood pressure (BP) and arterial oxygen saturation (SpO₂) in CPA patients who got return of spontaneous circulation (ROSC).

Methods

We measured rSO₂ in CPA patients who were transferred to two tertiary emergency medical centers. On arrival, rSO₂ sensor(HAND ai TOS, TOSTEC, Tokyo, Japan) was attached to the forehead of patients, and monitored continuously during cardiopulmonary resuscitation. In the patients who got ROSC, we compared change in rSO₂ and BP, SpO₂ just after ROSC shown as ROSC0, and 10 minutes after ROSC shown as ROSC10. And correlation between rSO₂ and BP, SpO2 was also evaluated in 8 patients.

rSO₂ increased immediately after ROSC, and showed the significance. However, in BP and SpO₂, there were no significant differences between in ROSC 0 and ROSC 10. BP rather showed lower tendency in ROSC 10 compared to ROSC 0. We made scatter plots for each time points, and compared the rSO₂ and BP, SpO₂. There was no significant correlation between rSO_2 and neither BP nor SpO_2 .

There were 8 patients whose ABG data was obtained at the comparable time point with BP and SpO₂. The graphs show PaO₂ and SaO₂ in addition to BP and SpO₂. rSO₂ increased significantly after ROSC as shown before. rSO₂ increased even PaO₂ in two patients decreased in ABG, if patients had their own heartbeat.

plots for each time points, and compared the rSO₂ and PaO₂, SaO₂. There was no significant correlation between rSO₂ and neither PaO₂ nor SaO₂.

Conclusion

 \succ We clarified that there is a differential recovery between rSO₂ and BP, SpO₂ change after ROSC in CPA patients.

 \succ Further study is required to clarify the factors which contribute to rSO₂ increase.